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Table 2: Ablation studies validated on Scenery dataset.

ing Module (PSM) and per-patch image
normalization.

Table 1: Quantitative results of one-step and multi-step outpainting. Best and
second best results are boldface and underlined. 1x represents one step out-

painting, while 2x and 3x denote two- and three-step outpainting respectively.

Our QueryOTR could
generate more realistic
iImages with vivid details and
enrich the contents of the
generated regions marked
In white box. Furthermore,
our method could weaken
the sense of edges between
the generated regions and
Input sub-image.
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(b) Query Expansion Module (QEM)
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Given an image x € R?*W>*3 we aim to extrapolate outside contents beyond the image boundary with
extra M-pixels. The generator will produce an image ¥ € RHT2M*XW+2M)X3 The goal is to predict the extra

. 2.
sequence {x;**, x;72, ..., x;*}, where x}, € RP" 3.

(a) w/o QEM (b) w/o PSM

We proposed a novel hybrid query-based encoder-decoder transformer framework to extrapolate visual
context all-side around a given image. The QEM helps to accelerate the transformer model convergence
Concl usion and PSM contributes to generate seamless extrapolated images realistically and smoothly.
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The proposed QEM is designed to speed up the convergence of pure transformer by generating the
expanded queries for the transformer decoder. We predict the decoders' queries conditioned on encoders'
features, and take advantage of CNN's inductive bias to accelerate the convergence.

PSM is designed to mitigate the artifacts issue by considering the neighboring patches' content enabling
the output sequence to have same length but less effect as the predefined grids.




